Основания равнобедренной трапеции равны 20 и 32, боковая сторона 10. Найдите высоту трапеции
от

1 Ответ

Дано:
- Основания трапеции: 20 и 32
- Боковая сторона: 10

Найти:
- Высоту трапеции

Решение:

1. Обозначим основания трапеции как a = 20 и b = 32, боковую сторону как c = 10, а высоту как h.

2. Найдем разницу между основаниями:
   d = (b - a) / 2
   d = (32 - 20) / 2 = 12

3. Используем теорему Пифагора в треугольнике, образованном высотой и половинами разности оснований:
   c^2 = d^2 + h^2
   Подставляем значения:
   10^2 = 12^2 + h^2
   100 = 144 + h^2
   h^2 = 100 - 144
   h^2 = -44

   Оказывается, расчет показывает отрицательное значение, что не может быть верным. Переопределяем параметры и применяем правильный расчет.

4. Для правильного расчета:
   c^2 = (b - a)^2 / 4 + h^2
   10^2 = (32 - 20)^2 / 4 + h^2
   100 = 144 / 4 + h^2
   100 = 36 + h^2
   h^2 = 100 - 36
   h^2 = 64
   h = sqrt(64)
   h = 8

Ответ:
Высота трапеции равна 8.
от