Дано:
- Время спуска пассажира, идущего по движущейся лестнице t1 = 15 с
- Время спуска неподвижного пассажира на работающем эскалаторе t2 = 24 с
Найти:
- Время, за которое спустится пассажир, идущий по неработающему эскалатору t3.
Решение:
1. Обозначим:
- h - высота спуска (высота эскалатора).
- v_эскалатора - скорость эскалатора (м/с).
- v_пассажира - скорость пассажира (м/с).
2. Найдем высоту h через спуск неподвижного пассажира:
h = v_эскалатора * t2 = v_эскалатора * 24.
3. Найдем высоту h через спуск движущегося пассажира:
h = (v_пассажира + v_эскалатора) * t1 = (v_пассажира + v_эскалатора) * 15.
4. Приравняем два выражения для h:
v_эскалатора * 24 = (v_пассажира + v_эскалатора) * 15.
5. Раскроем скобки и упростим:
v_эскалатора * 24 = v_пассажира * 15 + v_эскалатора * 15.
v_эскалатора * 24 - v_эскалатора * 15 = v_пассажира * 15.
v_эскалатора * (24 - 15) = v_пассажира * 15.
v_эскалатора * 9 = v_пассажира * 15.
6. Выразим скорость эскалатора через скорость пассажира:
v_эскалатора = (15 / 9) * v_пассажира = (5 / 3) * v_пассажира.
7. Теперь найдем время t3, за которое спустится пассажир, идущий по неработающему эскалатору:
t3 = h / v_пассажира.
8. Подставим высоту h через неподвижного пассажира:
h = v_эскалатора * 24 = ((5 / 3) * v_пассажира) * 24 = (40 / 3) * v_пассажира.
9. Подставим h в формулу для t3:
t3 = ((40 / 3) * v_пассажира) / v_пассажира = 40 / 3.
10. Переведем в секунды:
t3 = 13.33 с.
Ответ:
Пассажир, идущий по неработающему эскалатору, будет спускаться примерно 13.33 секунды.