дано:
диаметр кольца D = 20 см = 0,2 м
диаметр провода кольца d = 2 мм = 0,002 м
скорость изменения магнитной индукции dB/dt = 1,09 Тл/с
удельное сопротивление меди ρ = 1,72 · 10^(-8) Ом·м
площадь поперечного сечения провода S_провод = π * (d/2)^2
площадь кольца S_кольцо = π * (D/2)^2
найти:
индукционный ток, возникающий в кольце.
решение:
По закону Фарадея ЭДС индукции в кольце равна:
ε = -dФ/dt,
где Ф — магнитный поток, который равен B * S_кольцо, и его изменение связано с изменением магнитной индукции:
dФ/dt = S_кольцо * dB/dt.
Таким образом, ЭДС индукции:
ε = S_кольцо * dB/dt.
Подставляем значение площади кольца:
S_кольцо = π * (D/2)^2.
Тогда:
ε = π * (D/2)^2 * dB/dt.
Теперь находим индукционный ток. Согласно закону Ома для полной цепи:
I = ε / R,
где R — сопротивление кольца. Сопротивление кольца можно выразить через удельное сопротивление меди ρ и длину кольца L:
R = ρ * L / S_провод,
где L — длина кольца (окружность):
L = π * D.
Площадь поперечного сечения провода:
S_провод = π * (d/2)^2.
Теперь подставляем все данные:
ε = π * (0,2/2)^2 * 1,09 = π * (0,1)^2 * 1,09 ≈ 0,0342 В.
Длина кольца L = π * 0,2 = 0,628 м.
Площадь поперечного сечения провода S_провод = π * (0,002/2)^2 ≈ 3,14 * 10^(-6) м^2.
Сопротивление кольца:
R = (1,72 * 10^(-8)) * 0,628 / 3,14 * 10^(-6) ≈ 0,000035 Ом.
Теперь находим ток:
I = 0,0342 / 0,000035 ≈ 9,77 А.
Ответ:
Возникающий в кольце индукционный ток примерно равен 9 А.