Дано:
Угол между биссектрисой и противоположной стороной равен 75°.
Найти:
Найти угол при основании равнобедренного треугольника.
Решение:
Пусть угол при основании равнобедренного треугольника равен x градусов. Так как треугольник равнобедренный, то биссектриса разделяет угол при основании пополам, следовательно, угол между биссектрисой и каждой из равных сторон будет равен x/2.
Из условия задачи у нас есть, что угол между биссектрисой и противоположной стороной равен 75°. Тогда сумма этого угла и угла x/2 должна равняться 180° (так как сумма углов в треугольнике равна 180°).
Таким образом, у нас получается уравнение:
x/2 + 75 = 180
Решая это уравнение, найдем значение угла x:
x/2 = 180 - 75
x/2 = 105
x = 2 * 105
x = 210
Ответ:
Угол при основании равнобедренного треугольника равен 210 градусов.