Брусок массой 1 кг движется по столу с начальной скоростью 6 м/с. К бруску прикладывают силу, направление которой совпадает с направлением начальной скорости бруска. Коэффициент трения между бруском и столом равен 0,3. Чему будет равна скорость бруска через 5 с, если модуль силы равен: а) 2 Н? б) 3 Н? в) 4 Н?
от

1 Ответ

дано:  
масса бруска m = 1 кг  
начальная скорость v0 = 6 м/с  
коэффициент трения μ = 0,3  
ускорение свободного падения g = 9,81 м/с²  
время t = 5 с  

найти:  
скорость бруска через 5 секунд для случаев:  
а) F = 2 Н  
б) F = 3 Н  
в) F = 4 Н  

решение:  
1. Сначала найдем силу трения Fтр:

Fтр = μ * N  
где N = m * g = 1 кг * 9,81 м/с² = 9,81 Н  
Fтр = 0,3 * 9,81 Н = 2,943 Н

2. Теперь рассчитаем результирующую силу R для каждого случая, учитывая направление силы и силу трения:

R = F - Fтр  

а) Для F = 2 Н:  
R = 2 Н - 2,943 Н = -0,943 Н  
Ускорение a = R / m = -0,943 Н / 1 кг = -0,943 м/с²  
Скорость через 5 секунд:  
v = v0 + a * t = 6 м/с - 0,943 м/с² * 5 с = 6 м/с - 4,715 м/с = 1,285 м/с

б) Для F = 3 Н:  
R = 3 Н - 2,943 Н = 0,057 Н  
Ускорение a = R / m = 0,057 Н / 1 кг = 0,057 м/с²  
Скорость через 5 секунд:  
v = v0 + a * t = 6 м/с + 0,057 м/с² * 5 с = 6 м/с + 0,285 м/с = 6,285 м/с

в) Для F = 4 Н:  
R = 4 Н - 2,943 Н = 1,057 Н  
Ускорение a = R / m = 1,057 Н / 1 кг = 1,057 м/с²  
Скорость через 5 секунд:  
v = v0 + a * t = 6 м/с + 1,057 м/с² * 5 с = 6 м/с + 5,285 м/с = 11,285 м/с

ответ:  
а) Скорость бруска через 5 с при F = 2 Н равна 1,285 м/с.  
б) Скорость бруска через 5 с при F = 3 Н равна 6,285 м/с.  
в) Скорость бруска через 5 с при F = 4 Н равна 11,285 м/с.
от