Дано:
- максимальная дальность прыжка S = 0,6 м
- начальная скорость прыжка V0 (одинаковая для дальности и высоты)
Найти:
- максимальную высоту H, на которую может подпрыгнуть лягушонок
Решение:
1. Для расчета дальности прыжка используем формулу:
S = (V0^2 * sin(2α)) / g,
где α - угол броска, g - ускорение свободного падения (g ≈ 9,81 м/с²).
2. Чтобы максимизировать дальность прыжка, угол α должен быть равен 45°. Тогда sin(90°) = 1. Подставляем в формулу:
S = (V0^2) / g.
3. Из этой формулы выражаем начальную скорость V0:
V0^2 = S * g
V0^2 = 0,6 * 9,81
V0^2 = 5,886
V0 = √5,886 ≈ 2,43 м/с.
4. Теперь найдем максимальную высоту H, на которую может подпрыгнуть лягушонок. Для этого используем формулу:
H = V0^2 / (2g).
5. Подставим значение V0:
H = (2,43^2) / (2 * 9,81)
H = 5,9049 / 19,62
H ≈ 0,301 м.
Ответ:
Максимальная высота, на которую может подпрыгнуть лягушонок, составляет примерно 0,301 м.