Дано:
1. Уравнение движения первого тела: x1 = 2 + 4t
2. Уравнение движения второго тела: x2 = 5
3. Уравнение движения третьего тела: x3 = 4 + 3t^2
Найти:
Характеристики движения каждого из тел.
Решение:
1. Первое тело (x1 = 2 + 4t):
- Это уравнение представляет собой линейное движение с постоянной скоростью.
- Начальная координата: x1(0) = 2 м.
- Скорость: v1 = 4 м/с (коэффициент перед t).
- Движение направленно вдоль оси x, так как скорость положительна.
2. Второе тело (x2 = 5):
- Уравнение x2 = 5 означает, что это тело не движется, а находится на фиксированной позиции.
- Начальная и конечная координаты: x2 = 5 м для любого времени t.
- Скорость: v2 = 0 м/с (тело неподвижно).
3. Третье тело (x3 = 4 + 3t^2):
- Это уравнение описывает движение с ускорением, так как содержит член t^2.
- Начальная координата: x3(0) = 4 м.
- Ускорение: a = d^2x/dt^2 = 6 м/с² (производная второго порядка от x3 по t).
- Скорость изменяется со временем, так как v3 = d(x3)/dt = 6t м/с (это зависит от времени и увеличивается).
Ответ:
Первое тело движется с постоянной скоростью 4 м/с от начальной позиции 2 м; второе тело неподвижно на позиции 5 м; третье тело движется с ускорением, начиная с позиции 4 м, и его скорость увеличивается со временем.